Intro to Composite Functions

These notes are intended as a summary of section 4.3 (p. 291 - 297) in your workbook. You should also read the section for more complete explanations and additional examples.

Introduction

Cam is a farmer. Each year he plants seeds that turn into corn. The function below gives the amount of corn , C, in kilograms, that he expects to produce if he plants corn on a acres of land.

$$
C(a)=7500 a-1500
$$

For example, if Cam plants two acres, he expects to produce

$$
C(2)=7500(2)-1500=13500 \mathrm{~kg} \text { of corn }
$$

What Cam really wants to know is how much money he will make from selling his corn. He uses the following function to predict the amount of money, M, in dollars, that he will earn from selling c kilograms of corn.

$$
M(c)=0.9 c-50
$$

So, if Cam produces 13500 kg of corn, he can expect to make

$$
M(13500)=0.9(13500)-50=\$ 12100
$$

Notice that Cam has to use two separate functions to get from acres planted to expected earnings. The first function, C, takes acres to corn, while the second function, M, takes corn to money.

Wouldn't it be great if Cam could write a function that predicted the amount of money he would make directly from the number of acres he planted?

If Cam plants corn on a acres, he expects to produce $C(a)$ kilograms of corn. If he produces $C(a)$ kilograms of corn, he expects to make $M(C(a))$ dollars.

So, to find a function that converts a acres directly into expected earnings, we must find the expression $M(C(a))$.

Notice that in the expression $M(C(a))$, the input of the function M is $C(a)$. So, to find this expression, we must substitute $C(a)$ for c in the function M.

$$
\begin{aligned}
M(c) & =0.9 c-50 \\
M(C(a)) & =0.9(C(a))-50 \\
& =0.9(7500 a-1500)-50 \\
& =6750 a-1350-50 \\
& =6750 a-1400
\end{aligned}
$$

So the function $M(C(a))=6750 a-1400$ converts acres planted directly into expected earnings.
Let's use this function to predict the amount of money Cam would earn from planting two acres of corn.

$$
M(C(2))=6750(2)-1400=\$ 12100
$$

Cam should expect to earn $\$ 12100$, which is consistent with our previous work.

Composition of Functions

What we just found is called a composite function. The composition of two functions, written

$$
f(g(x)) \quad \text { or } \quad f \circ g(x)
$$

is the function that results when $g(x)$ is substituted for every x in $f(x)$.
Note: Both of the expressions above are read as f of g at x.

Evaluating Composite Functions

Composite functions can be evaluated using one of several methods:
To evaluate $f(g(x))$ when $x=a$:

1. Using tables of values

- use the first table of values to determine the y-coordinate of $g(x)$ when $x=a$
- use the second table of values to determine the y-coordinate of $f(x)$ when x is equal to the y-coordinate of $g(x)$ determined in the first step
- the y-coordinate of $f(x)$, as determined in the second step, is the value of $f(g(a))$

2. Graphically

- locate the point on the graph of $g(x)$ whose x-coordinate is a
- locate the point on the graph of $f(x)$ whose x-coordinate is equal to the y coordinate of the point we located on the graph of $g(x)$
- the y-coordinate of the point we found on $f(x)$ is the value of $f(g(a))$

3. Algebraically

- determine the value of $g(a)$ by substituting a for x in $g(x)$
- determine the value of $f(g(a))$ by substituting the value of $g(a)$ for x in $f(x)$

Example 1 (sidebar p. 294)

The tables below define two functions.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	8
-1	3
0	0
1	-1
2	0

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-2	3
-1	2
0	1
1	0
2	-1

Use these tables to determine each value.
a) $g(f(2))$
b) $g(g(2))$

Example 2 (sidebar p. 295)

Given the graphs of $y=f(x)$ and $y=g(x)$, determine each value below.

a) $f(g(-2))$
b) $g(f(3))$

Example 3 (sidebar p. 296)

Given the functions $f(x)=x^{2}+3 x$ and $g(x)=-2 x+1$, determine each value.
a) $f(g(9))$
b) $g(f(9))$

Example 4 (sidebar p. 297)

Given $f(x)=2 x^{2}+1$ and $g(x)=2 x+7$, determine an explicit equation for each composite function, then state its domain and range.
a) $f(g(x))$
b) $g(f(x))$
c) $g(g(x))$

Homework: $\# 4-11,13,15$ in the section 4.3 exercises (p. 298 - 304). Answers on p. 305.

